
InfNeRF: Towards Infinite Scale NeRF Rendering
with O(log n) Space Complexity
— Supplementary Material —

Jiabin Liang⋆1 , Lanqing Zhang1 , Zhuoran Zhao2 , and Xiangyu Xu3

1 Sea AI Lab, 1 Fusionopolis Place, #17-10, Galaxis, 138522, Singapore
{liangjb,zhanglq}@sea.com

2 National University of Singapore, Singapore
zhuoran.zhao@u.nus.edu

3 Xi’an Jiaotong University, 710049, Xi’an, China
xuxiangyu2014@gmail.com

1 Method

1.1 Tree Pruning

Proposed tree pruning is robust as the subtree pruning is only restricted to cases
where there are no sparse points in a relatively large cube (approximately 2048
pixel on image) . Even in the rare case that a subtree is pruned by mistake,
the affected volume can still be well reconstructed by its parent node, albeit
in a coarser manner. This ensures that, while fine details may be omitted, the
essential structure of the scene is preserved.

Because most of the sparse points lay on the surface of the object, which
is a 2-manifold, so theoretically the octree will converge to a quadtree when
gridsize → 0.

1.2 Training

Pyramid Supervision Given the hierarchical nature of image pyramid, which
has significantly different amount of pixel at each level, the pixel sampling strat-
egy of conventional NeRF, which samples all images equally, is not suitable for
our pyramid supervision. To account for the pixel imbalance across different
pyramid levels, we perform uniform sampling in pixel domain instead, where a
high-resolution image receives four times the sampling rate compared to its low-
resolution counterpart. This strategy facilitates more balanced training across
different levels of the image pyramid. An intriguing observation worth noting is
that each level of the pyramid contains one-fourth the number of pixels as its
upper level, mirroring the number of nodes in the quadtree. This correspondence
ensures that the training data is approximately proportional to the parameters
across different levels of the hierarchy.

⋆ corresponding author

https://orcid.org/0009-0000-3087-4540
https://orcid.org/0009-0006-4662-809X
https://orcid.org/0009-0008-3944-2099
https://orcid.org/0000-0002-9305-5830

2 J. Liang et al.

Furthermore, to encourage sharpness of the rendered results, we divide the
GSD of each node by 2 during training, allowing the node to be supervised by
images one level lower in the pyramid.

1.3 Complexity Analysis

In this analysis, the variable n denotes the total information encapsulated within
the scene at a resolution desired by the user. This resolution, measured in meters
per pixel, corresponds to the GSD introduced in paper. Therefore, for a simple
2.5D scene, n can be approximated by:

n =
S

GSD2 , (1)

where S denotes the area of the scene. In real-world applications, the required
resolution tends to vary significantly. This could be exemplified by the contrast
between urban and rural areas, or the detailed features of a statue’s face com-
pared to its body. Therefore, GSD becomes a function of position x, and the n
in our 3D problem is defined as:

n =

∫∫∫
x∈V

dV

GSD(x)3
, (2)

where V denotes the volumetric representation of the scene.
Considering the total parameters of all the leaf nodes is O(n), we can assume

this is a reasonable lower bound for space complexity to achieve user-defined
resolution. The total parameters of the tree are, therefore, still O(n+ n

λ + n
λ2 +

...) = O(λ
λ−1n) = O(n) where λ represents the average number of children

of each node. λ is around 4, depending on the scene’s sparseness and the tree
pruning performance. The extra training data from the image pyramid is 33% of
the original data and is still linear and also acceptable. For rendering, the total
number of samples is the total number of pixels times the number of samples
per ray. It’s a constant. Each sample goes through O(log(n)) times recursively
in the tree and only once in the neural network. The total time complexity is
O(log(n)). Each step of recursion involves a few comparisons and one memory
access, which are negligible compared to the computational load of the neural
network.

The O(log n) rendering space complexity is a crucial aspect in this study.
During rendering, as illustrated in Fig. 1, the frustum can be partitioned into
many zones exponentially in depth. Each zone comprises samples with a similar
radius. Therefore, processed by nodes at the same level in the tree. As the size
of each zone grows exponentially in both width and depth, the size of AABB in
the corresponding level follows. Therefore, each zone will overlap with a constant
number of nodes. On the other hand, let us consider the number of the zones.
Without any assumption, the number of zones is theoretically infinite in both
near and far directions. However, near-plane clipping, or the user’s specified

Title Suppressed Due to Excessive Length 3

Fig. 1: The frustum is exponentially partitioned in depth into O(logn) zones, with each
zone overlapping with a constant number of nodes from the corresponding tree level.
In the Figure, the green box represents the NeRF responsible for rendering the green
zone, and the two blue boxes represent the NeRFs for rendering the blue zone. These
nodes are required for rendering this single frame, resulting to an overall rendering
space complexity of O(logn).

minimum resolution (maximum depth of the tree), imposes constraints, and caps
the number of zones in the near direction. For the far direction, when the scene
extends infinitely, the number of zones will tend to infinity in an order of log(n).
Combining this with the total number of zones, the overall space requirement in
rendering this frustum is O(log n). This underscores the algorithm’s scalability
and efficiency.

2 Experiment

2.1 Implementation Details

A single camera appearance embedding module proposed by [2] is shared by the
entire tree. The images from the same pyramid with different resolutions share
one appearance embedding feature. For training the appearance embedding, sim-
ilar to MipNeRf [1] and Mega-NeRf [3], the left half of the test image is used
in training. Evaluation is conducted solely on the right half of the image. The
tree is limited to 4 levels, resulting a reasonable resolution of 5cm for a scene
spanning 1 km. 5-level image pyramid is used in training, starting from the orig-
inal resolution. Loss weights are set to w1 = 0.002, w2 = 0.01, w3 = 0.001. The
training employs the ADAM optimizer with a learning rate of 10−2, consistent
with Instant-NGP. Each batched is 65,536 rays. For sampling along the ray, a
three-stage approach is adopted: initially, 192 sample points are chosen using
disparity sampling. Subsequently, PDF sampling is applied in two additional
rounds, sampling 96 points and 48 points.

4 J. Liang et al.

2.2 Tree Pruning

Fig. 2: We show only the scene’s AABB and leaf AABBs for the Garden dataset on the
left side and the Residential dataset (with depth limited to 3) on the right side. Camera
looks down from the top. InfNeRF automatically creates smaller blocks to represent
the details in the middle of the Garden scene. Meanwhile, it creates equal-sized blocks
to represent the buildings near the ground in the Residential scene.

Without any assumptions and interventions, our tree pruning algorithm au-
tomatically allocates resources based on the scene. On the left side of Fig. 2, the
leaf AABBs for a small scene "Garden" in Mipmap datasets [1] are depicted.
In this scene, photos are taken closely around a table and a vase in the middle
of a small garden. Without tree depth limit, InfNeRF automatically generate a
tree with a depth of 4 to capture all details. 98.7% of the prefect octree’s nodes
are pruned. Only 62 nodes are left. The small blocks representing the table and
vase are located at the center of the scene, along with larger blocks located at
the surrounding area. The right side of Fig. 2 illustrates the leaf AABBs of the
residential scene, In this scene, numerous low buildings are distributed across
the ground. InfNeRF effectively divides the xy plane into blocks of equal size.
90% nodes are pruned, while only 59 nodes are create. Both cases show that,
without any human intervention, the InfNeRF pruning algorithm demonstrates
its ability to adapt to different types of scenes effectively.

2.3 Distributed Training

We conduct experiments on the Residence dataset. In order to balance the tree
over 4 GPU, the scene is shift to center, for both distributed training and single-
machine training. The maximum depth of the octree is 3, with 4 levels. When
L = 1, only the first level is shared. 8 subtrees are divided into 4 groups and
assigned to 4 GPU devices. The batch size is also divided by 4 for each GPU.
The training data is split using the method described in paper.

Title Suppressed Due to Excessive Length 5

Fig. 3: Training speed and convergence of our distributed training algorithm. Only the
top layer of the octree was shared.

The distributed training achieves a PSNR 26.0 and PSNR0 25.7, whereas
single-machine training yields a PSNR 26.1 and PSNR0 25.6. Each device in
distributed training owns only 25.49% of the total model, training speed is ap-
proximately 3 times faster than single GPU. The experiment shows that InfNeRF
can effectively parallelize the training workload while essentially maintaining ac-
curacy, which facilitates scalable performance and faster convergence.

References

1. Barron, J.T., Mildenhall, B., Tancik, M., Hedman, P., Martin-Brualla, R., Srini-
vasan, P.P.: Mip-nerf: A multiscale representation for anti-aliasing neural radiance
fields. In: Proceedings of the IEEE/CVF International Conference on Computer
Vision. pp. 5855–5864 (2021) 3, 4

2. Martin-Brualla, R., Radwan, N., Sajjadi, M.S., Barron, J.T., Dosovitskiy, A., Duck-
worth, D.: Nerf in the wild: Neural radiance fields for unconstrained photo col-
lections. In: Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition. pp. 7210–7219 (2021) 3

3. Turki, H., Ramanan, D., Satyanarayanan, M.: Mega-nerf: Scalable construction of
large-scale nerfs for virtual fly-throughs. In: Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition. pp. 12922–12931 (2022) 3

	InfNeRF: Towards Infinite Scale NeRF Rendering with O(log n) Space Complexity — Supplementary Material —

